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Data augmentation is a common practice in image classification, employing methods such as reflection, 

random cropping, re-scaling, and transformations to enhance training data. These techniques are 

prevalent when working with extended real-world datasets, focusing on improving classification 

accuracy through increased diversity. The use of Generative Adversarial Networks (GANs), known for 

their high representational power, enables learning the distribution of real data and generating samples 

with previously unseen discriminative features. However, intra-class imbalances in augmentations are 

problematic for conventional GAN augmentations. Hence, we propose a framework named Text-Based 

Style-Manipulated GAN augmentation framework (TB-SMGAN) aims to leverage the generative 

capabilities of StyleGAN2-ADA. In this framework, we utilize StyleCLIP to control disentangled 

feature manipulations and intra-class imbalances. We enhance the efficiency of StyleCLIP by fine-

tuning CLIP with x-ray images and information extractions from corresponding medical reports. Our 

proposed framework demonstrates an improvement in terms of mean PR-AUC score when employing 

the text-based manipulated GAN augmentation technique compared to conventional GAN 

augmentation. 
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1. INTRODUCTION 

Accurately classifying medical images is crucial for early diagnosis and effective treatment, but limited 

training data remains a critical obstacle (Liu et al., 2023). Traditional data augmentation techniques like 

geometric transformations and color jittering are used to expand datasets in literature. Their ability to introduce 

clinically relevant features is essential for applying medical tasks properly. Nevertheless, these methods are 

constrained to precise classification within medical images (Shorten & Khoshgoftaar, 2019). 

Several approaches are explored to address data scarcity in medical image classification, each with its own set 

of limitations. One such approach is Conventional Data Augmentations, such as geometric transformations 

and color jittering, which are employed to expand datasets. However, these methods may not introduce 

clinically relevant features necessary for accurate diagnosis. Furthermore, they have the drawback of creating 

unrealistic augmentations that can potentially lead to biased models (Shorten & Khoshgoftaar, 2019; Jablonski 

et al., 2022; Wang & Qi, 2022). Another strategy is Self-Supervised Learning, which holds promise by learning 

representations from unlabeled data. Despite its potential, aligning learned features with specific diagnosis 

tasks proves to be challenging, and the performance in medical domains often falls short of optimal levels 

(Benčević et al., 2022; Ke et al., 2022; Hochberg et al., 2022). Additionally, Transfer Learning, where 

leveraging pre-trained models on large-scale datasets can enhance performance on smaller medical datasets. 

However, the presence of domain mismatch, characterized by differences between the training and target 
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datasets, poses a substantial challenge and can significantly impact the model's generalizability (Dao et al., 

2022; 2023; Kariuki et al., 2023). Another notable approach is the use of the Deep Synthetic Minority 

Oversampling Technique (SMOTE), designed to address class imbalance by oversampling minority classes. 

Despite its effectiveness in tackling imbalanced datasets, this technique has drawbacks, including the risk of 

overfitting and the potential generation of unrealistic samples (Tarawneh et al., 2022; Altwaijry, 2023). Lastly, 

Physics-Informed Neural Networks offer an avenue to improve model generalizability by integrating physical 

constraints into the learning process. However, a significant challenge lies in the incorporation of accurate and 

relevant physical models specifically tailored for medical images (Wang et al., 2021; Islam & Mondal, 2019). 

Considering these limitations, a robust data augmentation technique is required to solve this problem. This 

paper introduces a novel Text-Based Style-Manipulated GAN augmentation framework (TB-SMGAN) that 

overcomes these limitations by leveraging the combined capabilities of StyleGAN2-ADA (Karras et al., 2020) 

and StyleCLIP (Patashnik et al., 2021). Utilizing StyleCLIP's ability to manipulate disentangled features based 

on textual descriptions, TB-SMGAN extracts key clinical findings from medical reports to fine-tune the 

generation of disease-specific variations within each class. This allows us to control precisely over intra-class 

imbalances and targeted generation of discriminative features relevant to specific medical diagnoses. To 

further refine TB-SMGAN's ability to generate clinically relevant augmentations, we fine-tune Contrastive 

Language-Image Pre-Training (CLIP) (Radford et al., 2021) with x-ray images and extracted information from 

corresponding medical reports. This domain-specific adaptation improves the framework's effectiveness in 

medical tasks. Our framework demonstrates significantly improved classification performance, as measured 

by PR-AUC score, compared to standard GAN augmentation. This improvement showcases the potential of 

TB-SMGAN for overcoming data scarcity and enhancing the accuracy and generalizability of medical image 

classification models, ultimately contributing to improved patient care. 

Our proposed framework presents several contributions to the field of medical Generative Adversarial 

Network (GAN) augmentation: 

1) Rule-Based Information Extraction from X-ray Reports: We develop a novel rule-based algorithm 

for accurately extracting relevant information from X-ray reports. This extracted information 

provides additional context for medical image analysis and enhances the effectiveness of 

downstream tasks. 

2) Fine-Tuning CLIP for Medical Domain Adaptation: We fine-tune CLIP using various text extraction 

methods specifically tailored for the medical domain. This domain adaptation ensures the learned 

representations are relevant and informative for medical applications, leading to improved 

performance in subsequent tasks. 

3) Text-Based Latent Space Manipulations for Medical Data Augmentation: This work introduces a 

novel approach that utilizes text-based information to manipulate the latent space of GANs. This 

approach enables the generation of synthetic medical data that is not only realistic but also 

semantically aligned with the extracted textual information, further enriching the training dataset and 

improving the generalizability of deep learning models trained on augmented data. 

These contributions collectively address essential challenges within the domain of medical image analysis, 

offering substantial advancements that contribute to the refinement of deep learning models. The results shows 

that the proposed framework enhances accuracy and efficacy, establishing a more robust foundation for diverse 

clinical applications. 

The rest of the paper is organized as follows: Section II overviews and discusses the related works in the 

literature. Then the details of TB-SMGAN framework are given in section III. We demonstrate the comparative 

results in performance evaluations in section IV. Finally, Section V summarizes key findings and the outputs 

of the paper. 

2. RELATED WORKS 

GAN is a type of deep learning model capable of generating synthetic data that is statistically similar to the 

real data (Alqahtani et al., 2021). This is achieved by training two neural networks in an adversarial manner: 

a generator network that attempts to create realistic synthetic data, and a discriminator network that attempts 
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to distinguish between real and synthetic data. This adversarial process allows the generator to progressively 

learn to generate increasingly realistic and diverse data (Li et al., 2022). 

In recent years, GAN-based data augmentation has emerged as a powerful alternative to classical data 

augmentation techniques (Lacan et al., 2023) One such approach is proposed to populate training datasets with 

synthetic data (Bowles et al., 2018) This approach utilizes the Progressive Growing of GANs (PGGAN) 

architecture for effective modeling of the input data distribution. The authors compare classical and GAN 

augmentation across various datasets to assess the generalizability of their synthetic data augmentation 

strategy. Additionally, they investigated the effects of varying augmentation strengths on model performance. 

Experiments demonstrate that GAN augmentation improves classification accuracy compared to classical data 

augmentation techniques. 

Medical GAN augmentation emerges as a beneficial tool for enhancing the performance of medical image 

classification tasks. One study collected data from Sheba Medical Center for three specific diseases and 

experimented with DCGAN, ACGAN, and ACGAN discriminator for data augmentation (Frid-Adar et al., 

2018). The best performance is observed when the classifier is trained with additional generated images 

alongside real data. Similarly, another study compares both classical and GAN data augmentation for 

pneumonia recognition and finds that the DCGAN-augmented classifier achieved the highest accuracy, recall, 

and F1 score (Kora Venu & Ravula, 2020). Low classification accuracies in medical datasets are attributed to 

class imbalance (Deepshikha & Naman, 2020). Researchers address this by balancing the dataset with samples 

generated by a DCGAN, leading to improved classification performance. Moreover, another study reported 

superior classification performance for underrepresented classes augmented with GANs compared to classical 

augmentation techniques (Sundaram & Hulkund, 2021). However, this work only focused on ROC-AUC 

score, which is insensitive to data imbalance. Our study addresses this limitation by reporting PR-AUC scores, 

providing a more comprehensive and robust evaluation of the proposed approach. We leverage the conditional 

StyleGAN2-ADA (Karras et al., 2020) model for synthetic data generation, further exploring its potential for 

enhancing medical image classification. 

The manipulation of latent spaces within GANs has emerged as a rapidly evolving field with significant 

potential for medical applications. However, the current research landscape exploring this technique in medical 

contexts remains relatively sparse, with limited investigations into its full capabilities. 

One notable contribution employed StyleGAN architecture for manipulating latent spaces, achieving the 

generation of synthetic CT images corresponding to T2-weighted MR images and vice versa (Fetty et al., 

2020). This work demonstrated the feasibility of cross-modality image synthesis through latent space walks 

between modalities. However, deeper investigations into the disentanglement properties of the style transfer 

process were not undertaken, leaving this area open for future research. 

3. TB-SMGAN: A GAN BASED HYBRID DATA AUGMENTATION FRAMEWORK 

In this section, we present the TB-SMGAN framework, which is shown Figure 1, the components of the 

framework are explained in detail. 

3.1. Proposed TB-SMGAN System Architecture 

We use a GAN framework, StyleGAN2-ADA, to generate realistic samples with a limited representational 

power dataset. The proposed adaptive discriminator augmentation technique stabilizes GAN training with tiny 

datasets and allows for diverse and realistic output generation without augmentation leakage or distortion 

(Karras et al., 2020). Our framework utilizes GAN augmentation to generate synthetic data samples and 

augment the dataset. Compared to traditional data augmentation techniques, GAN augmentation provides 

creative and realistic sample generation, preserving distinctive features with enough variation and fidelity. 

Therefore, we utilize StyleGAN2-ADA for both GAN augmentation and text-based style-manipulated 

augmentation experimentations.  

Recent developments from OpenAI enable us to utilize the representational power of the CLIP pre-trained 

model for latent space manipulation (Radford et al., 2021). StyleCLIP enables semantic meaningful latent 

https://doi.org/10.54287/gujsa.1501098
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space manipulation with text guidance. Although several approaches enable text-based style manipulations in 

StyleCLIP, we focus solely on the input-agnostic global direction method, which does not require further 

optimization. For a given pair of text that defines neutral and target attributes, the global direction method 

exploits the colinearity between CLIP's image embedding space and StyleGAN2-ADA's style space for the 

difference of the given text pair. Since the global direction method offers style manipulation on real images, 

we train the encoder4editing framework for manipulating real x-ray images (Tov et al., 2021). After training, 

we combine the pre-trained StyleGAN2-ADA generator, encoder4encoder and StyleCLIP in order to create 

text-based style-manipulated augmentations. 

 

Figure 1. Style manipulated data augmentation design overview 

During our initial experiments, we observed that the global optimization method does not yield the desired 

image manipulations in the context of chest X-rays since StyleCLIP using default CLIP weights. We infer this 

is due to the lack of medical representation in CLIP's training set. To address this issue, we fine-tune CLIP 

with medical image-text pairs originating from the MIMIC-CXR dataset (Johnson et al., 2019). We improve 

the fine-tuning process by incorporating NLP techniques for medical reports. 

To create more informative reports, we extract entities using scispaCy, which contains spaCy models for 

processing biomedical-specific textual data (Neumann et al., 2019; Honnibal et al., 2020). In our experiments, 

we use the entities extracted by the encore sci scibert modell, which is a complete spaCy pipeline built on top 

of a transformer and pre-trained on a large biomedical corpus consisting of nearly 785,000 words. We use only 

the entities extracted for each report, instead of the full report, and also use dependency relations between 

words. We modify the entities to create less complex semantics for each report as shown in Algorithm 1 . For 

instance, considering an X-ray report stating "There is no focal consolidation, pleural effusion, or 

pneumothorax." Our rule-based approach combines entities linked to the word "No" directly or indirectly, 

resulting in "no focal consolidation", "no pleural effusion" and "no pneumothorax" as modified entities. 

However, the results of our experiments show that the rule-based approach performs poorly for some classes. 

To address this issue, we analyze our rule-based approach to refine the disentanglement of disease-specific 

features, particularly for Edema and Consolidation classes. These classes present challenges due to their 

overlapping textual semantics. To overcome this, we introduce new indicator words and name the fine-tuning 

strategy "rule-based-V2". 

https://doi.org/10.54287/gujsa.1501098
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To quantify the effectiveness of style manipulations, we utilize DeepAUC, the top-performing solution in the 

CheXpert competition (Yuan et al., 2021) for evaluating the manipulated images. 

To connect the dots formally, we incorporated all of the aforementioned approaches into a framework named 

TB-SMGAN. Our proposed framework consists of several steps and uses various models and methods for 

information extraction, image generation, and classification as in Figure 1. TB-SMGAN proceeds with the 

following steps: 

1) Train StyleGAN2-ADA: The algorithm begins by training a StyleGAN2-ADA model, denoted as 

(G), on the set of real chest X-ray images 𝑋𝐶ℎ𝑒𝑋𝑝𝑒𝑟𝑡 

2) Train Encoder4Encoder for GAN Inversion: Next, an Encoder4Encoder model, denoted as (E), is 

trained using the previously trained StyleGAN2-ADA model (𝐺𝐶ℎ𝑒𝑋𝑝𝑒𝑟𝑡) and the set of real chest X-

ray images (𝑋𝐶ℎ𝑒𝑋𝑝𝑒𝑟𝑡). 

3) Extract Information and Fine-tune CLIP: For each information extraction method (i) in the set (I) 

consists of WGSum, RuleBasedV1, RuleBasedV2 and Impressions, and for each pair of X-ray image 

and report (x,r) in (𝑋𝑀𝐼𝑀𝐼𝐶−𝐶𝑋𝑅, 𝑅𝑀𝐼𝑀𝐼𝐶−𝐶𝑋𝑅) dataset, the algorithm fine-tunes a CLIP model, 

denoted as (𝑇𝑖), using the information extracted from the report (𝐹𝑖(r) and the X-ray image (x). 

4) Determine Style Manipulation Direction: For each information extraction method (i) and each 

disease (d) in the set of diseases (mathcal{D}), the algorithm computes a manipulation direction 

(𝛥𝑧+𝑑) using the StyleCLIP model (𝑆𝑖) which includes fine-tuned CLIP (𝑇𝑖), the positive and 

negative text prompts for the disease (𝑃+𝑑) and (𝑃−𝑑) respectively. 

5) Generate Style-Manipulated Images: The algorithm generates manipulated images for each 

information extraction method (i), each disease (\), and each X-ray image (x) in the set of X-ray 

images (𝑋𝑐ℎ𝑒𝑋𝑝𝑒𝑟𝑡
𝑑 ) with only disease (d) by applying the manipulation direction (𝛥𝑧+𝑑) to 

(𝑆𝑖(x,𝑋𝐶ℎ𝑒𝑋𝑝𝑒𝑟𝑡) which generates a synthetic image (𝑥+𝑑)  

6) Data Selection with Classifier: Select the top performing style manipulated synthetic images for each 

disease (d) in the set of diseases (D) by comparing PR-AUC scores using DeepAUC classifier 

trained on X-ray images and labels (𝑋𝐶ℎ𝑒𝑋𝑝𝑒𝑟𝑡, 𝐿𝐶ℎ𝑒𝑋𝑝𝑒𝑟𝑡). 

7) Merge Datasets: The algorithm then merges the original dataset (𝑋𝐶ℎ𝑒𝑋𝑝𝑒𝑟𝑡, 𝐿𝐶ℎ𝑒𝑋𝑝𝑒𝑟𝑡) with the set 

of manipulated images and corresponding labels (𝑥+𝑑, 𝑙+𝑑) to create a new dataset (�̂�⬚, �̂�⬚). 

8) Evaluate Representation Power of Augmented Dataset: Finally, the algorithm trains a DeepAUC 

model on the augmented dataset (�̂�⬚, �̂�⬚) and reports the results. 

Our proposed method represents a sophisticated approach to data augmentation, leveraging advanced models 

and techniques to generate new, manipulated images that are capable of improving the representational power 

of the final augmented dataset. 

https://doi.org/10.54287/gujsa.1501098
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4. EXPERIMENTAL RESULTS 

4.1. Datasets 

In this paper, we employ the CheXpert dataset (Irvin et al., 2019), comprising about 225,000 chest X-ray 

images from Stanford University Medical Center. The dataset includes 14 classes, with uncertain labels 

categorized as positive, negative, or uncertain.  

On our framework, we focus on five specific classes—Atelectasis, Cardiomegaly, Consolidation, Edema, and 

Pleural Effusion—central to the challenges in the CheXpert competition (Irvin et al., 2019). By excluding 

multi-class labeled samples, we refined the dataset to approximately 85,000 samples, optimizing our model's 

training for more focused and efficient learning in these specific classes. 

4.2. TB-SMGAN Framework 

This section presents the experimental results of our proposed method for augmenting chest X-ray datasets 

using text-based style manipulations. We evaluate the representation capacity of the augmentations by 

DeepAUC classifier. The key focus for classification performance evaluation is on PR-AUC scores instead of 

ROC-AUC scores. This metric provides a robust evaluation of our methodology, including its effectiveness in 

addressing class imbalance issues often encountered in medical image analysis tasks. 

Table 1 shows the PR-AUC scores of the DeepAUC classifier for different fine-tuning strategies on only 

synthetic data generated by TB-SMGAN. The DeepAUC classifier used for evaluation is trained on the 

CheXpert dataset without any augmentations. Each row represents a distinct fine-tuning strategy along with 

plus or minus signs that indicate positive or negative manipulation direction. Columns denote the PR-AUC 

scores for each disease. The "Mean AUC" column presents the average PR-AUC across all diseases. Results 

demonstrate significant variations in performance across strategies. Notably, rule-based (+) strategy achieves 

the highest PR-AUC for Cardiomegaly emphasizing the effectiveness of incorporating rule-based information 

during fine-tuning. The impression (+) strategy leads in PR-AUC for Consolidation and Atelectasis, 

underlining the importance of specific fine-tuning strategies for different diseases. 

Table 1. Classification results on only synthetic data generated by TB-SMGAN 

Fine-Tuning 

Strategy 

Cardiomegaly  

(PR-AUC) 

Edema  

(PR-AUC) 

Consolidatio

n  (PR-AUC) 

Atelectasis 

(PR-AUC) 

Pleural-

Effusion 

(PR-AUC) 

Mean 

AUC 

rule-based (-) 0,147 0,198 0,196 0,194 0,193 0,186 

impression (-) 0,191 0,203 0,159 0,169 0,175 0,179 

rule-based-V2 (-) 0,234 0,228 0,126 0,169 0,227 0,197 

original-CLIP (-) 0,151 0,41 0,225 0,197 0,411 0,279 

WGSum-

generated (-) 

0,254 0,241 0,207 0,247 0,24 0,238 

randomized (-) 0,19 0,269 0,182 0,261 0,312 0,243 

inverted 0,241 0,294 0,219 0,221 0,277 0,251 

rule-based (+) 0,579 0,235 0,17 0,364 0,432 0,356 

impression (+) 0,27 0,232 0,353 0,516 0,455 0,365 

rule-based-V2 (+) 0,208 0,382 0,222 0,281 0,619 0,342 

original-CLIP (+) 0,339 0,38 0,336 0,26 0,205 0,304 

WGSum-

generated (+) 

0,159 0,579 0,281 0,221 0,315 0,311 

randomized (+) 0,318 0,181 0,288 0,217 0,187 0,238 
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Table 2 presents the results of style-manipulated GAN augmentations. The augmented dataset includes the full 

CheXpert dataset and the corresponding generated data, depending on the fine-tuning strategy. Experiments 

are conducted for various fine-tuning strategies. "Pure-dataset" and "randomized" strategies are included for 

benchmarking and sanity-check purposes respectively. On the one hand, "Pure-dataset" demonstrates the 

results of the classifier on pure CheXpert dataset without any augmentations. On the other hand, "randomized" 

indicates the fine-tuning strategy which uses reports with random word order. This strategy demonstrates the 

significance of the word order in the context of fine-tuning. Additionally, "Inverted" fine-tuning strategy 

demonstrates the results for the inverted images originating from Encoder4Encoder. Moreover, "StyleGAN2-

Augmentation" is included to compare GAN augmentation with our proposed framework. This strategy 

includes class conditional image generation of StyleGAN2-ADA. In addition to the singular fine-tuning 

strategies, we experiment with the combinations of fine-tuning strategies. The ensemble method unifies the 

generated samples from various training strategies with maximum PR-AUC scores based on Table 1. For 

example, we include synthetic Cardiomegaly samples generated from the rule-based (+) method and synthetic 

Edema samples generated from the WGSum-Generated (+) method. To account for the unavailability of an 

impressions section for other datasets, we also employ an ensemble-without-impression method, in which we 

ignore the data created by fine-tuning strategies using impressions and select the data with the maximum PR-

AUC scores. For instance, we include data created by the original-CLIP (+) method for Consolidation, and we 

select data generated by the rule-based-V2(+) method instead of the impression (+) method. Based on the 

results in Table 2, the TB-SMGAN(ensemble) framework performs slightly better than GAN augmentation 

and performs the best among all manipulation strategies in terms of PR-AUC score. 

Table 2. Classification performance results of fine-tuning strategies on text-based style manipulated GAN 

augmented dataset 

Fine-Tuning Strategy 
Cardiomegaly 

(PR-AUC) 

Edema 

(PR-AUC) 

Consolidation 

(PR-AUC) 

Atelectasis 

(PR-AUC) 

Pleural-

Effusion 

(PR-AUC) 

Mean AUC 

pure-dataset 0,719 0,745 0,615 0,633 0,842 0,711 

rule-based (+), inverted and rule-

based-V2 (+) 
0,707 0,756 0,592 0,644 0,847 0,709 

impression (+) 0,688 0,766 0,562 0,68 0,855 0,71 

original-clip (+) 0,738 0,779 0,566 0,667 0,843 0,719 

rule-based-V2 (+) 0,658 0,8 0,643 0,66 0,841 0,72 

rule-based (-) 0,641 0,782 0,728 0,624 0,837 0,722 

inverted 0,7 0,788 0,66 0,651 0,841 0,728 

rule-based (+) 0,684 0,796 0,659 0,693 0,821 0,731 

WGSum-generated (-) 0,659 0,791 0,671 0,698 0,834 0,731 

randomized (+) 0,678 0,818 0,614 0,712 0,835 0,731 

rule-based-V2 (-) 0,649 0,787 0,703 0,707 0,838 0,737 

randomized (-) 0,682 0,791 0,688 0,701 0,827 0,738 

WGSum-generated (+) 0,687 0,79 0,669 0,691 0,852 0,738 

ensemble-without-impression 0,694 0,796 0,69 0,701 0,818 0,74 

impression (-) 0,664 0,796 0,758 0,682 0,823 0,744 

StyleGAN2-Augmentation 0,71 0,772 0,676 0,702 0,863 0,745 

original-clip (-) 0,67 0,81 0,706 0,727 0,827 0,748 

rule-based (+) and inverted 0,723 0,796 0,658 0,743 0,847 0,753 

TB-SMGAN (ensemble) 0,672 0,802 0,783 0,667 0,845 0,754 
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5. CONCLUSION 

GANs have demonstrated significant capabilities in representing complex data distributions. By effectively 

capturing the underlying variance of real-world data, GANs enable the generation of synthetic images with 

highly discriminative features. This work leverages the generative power of StyleGAN2-ADA to perform data 

augmentation for medical image datasets. Moreover, we introduce a text-based style manipulated GAN 

augmentation technique named TB-SMGAN for the medical domain. We utilize DeepAUC, the top solution 

of the CheXpert competition, to demonstrate the effectiveness of our GAN augmentation technique. Our 

methodology reveal that the classification performance of TB-SMGAN outperforms the classical GAN 

augmentation technique due to the increased representation of augmentations created by TB-SMGAN. 

While our findings are promising, there are several directions for future research. First, it would be beneficial 

to explore the application of our proposed framework to other domains beyond medical imaging, to assess its 

generalizability. Second, developing a consistent measurement methodology for the quality of the dataset 

could yield valuable insights. Lastly, as text-based manipulated GAN augmentation has shown promise, future 

work could focus on refining this technique and exploring its potential in other contexts. This could involve 

the incorporation of more complex textual information or the development of more sophisticated text-to-image 

translation methods. 
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